
A complete list of scalar types is available at:
https://graphql-aspnet.github.io/docs/types/scalars

<<interface>>
IGraphType

+ Kind: TypeKind
+ Published: bool

<<interface>>
ISchemaItem

+ Name: string
+ Description: string

<<interface>>
IEnumGraphType

+ Values: IEnumValueCollection
+ SourceResolver: ILeafValueResolver

<<interface>>
ITypedSchemaItem

+ ObjectType: Type
+ InternalName: string

<<interface>>
IEnumValue

+ Parent: IEnumGraphType

Scalars & Enumerations
The scalar and enumeration represent two of the basic types in GraphQL, together referred to as "leaf types". Both must be bound to C# types; be that an enum (as is the case with enumeration
types) or to a specific value/reference type.

You can add custom scalars to the system by registering your own IScalarGraphType at start up.

Graph Name .NET Type Serialized Type

STRING string string

INT int number

UINT uint number

LONG long number

ULONG ulong number

DECIMAL decimal number

FLOAT float number

DOUBLE double number

DATE* DateTime number

* GraphQL, by default, serializes dates to a number of ticks,
in milliseconds, from the unix epoch.

All value type scalars can be nullable (e.g. int?) . The object graph
you construct will be automatically configured for nullable values
depending on the properties and methods found in your code.

<<interface>>
ILeafValueResolver

+ Resolve(ReadOnlySpan<char>): object

<<interface>>
IScalarGraphType

+ SourceResolver: ILeafValueResolver

+ Serialize(object): object

* The items in this document represent the primary set of interfaces, properties and methods. It does not
represent a complete model.

All represented interfaces located at: /src/graphql-aspnet/Interfaces/*

https://graphql-aspnet.github.io/docs/types/scalars

<<interface>>
IGraphType

+ Kind: TypeKind
+ Published: bool

<<interface>>
ISchemaItem

+ Name: string
+ Description: string

<<interface>>
IObjectGraphType

IInterfaceGraphType

<<interface>>
ITypedSchemaItem

+ ObjectType: Type
+ InternalName: string

<<interface>>
IGraphFIeldContainer

+ Fields: IReadOnlyGraphFieldCollection

<<interface>>
IGraphField

+ TypeExpression: GraphTypeExpression
+ Resolver: IGraphFieldResolver

<<interface>>
IGraphArgumentContainer

+ Arguments: IGraphArgumentCollection

<<interface>>
IGraphArgument

+ DefaultValue : object
+ TypeExpression: GraphTypeExpression

Object and Interface Graph Types
The structure of the OBJECT and INTERFACE graph types are nearly identical. They both contain field definitions that potentially have arguments. The contents of and use of these fields
will vary significantly at runtime depending on the graph type in question.

<<interface>>
IGraphFieldResolver

+ Resolve(FieldResolutionContext): Task
+ ObjectType: Type

* The items in this document represent the primary set of interfaces, properties and methods. It does not
represent a complete model.

All represented interfaces located at: /src/graphql-aspnet/Interfaces/*

Input Object Graph Type
The INPUT_OBJECT graph type represents complex input values (such as objects) to graph fields. For the most part it is a collection of
named fields each of which may hold a leaf value or another INPUT_OBJECT.

<<interface>>
IGraphType

+ Kind: TypeKind
+ Published: bool

<<interface>>
ISchemaItem

+ Name: string
+ Description: string

<<interface>>
IInputObjectGraphType

+ Fields : IReadOnlyInputGraphFieldCollection

<<interface>>
ITypedSchemaItem

+ ObjectType: Type
+ InternalName: string

<<interface>>
IInputGraphField

+ TypeExpression: GraphTypeExpression
+ IsRequired: bool

* The items in this document represent the primary set of interfaces, properties and methods. It does not
represent a complete model.

All represented interfaces located at: /src/graphql-aspnet/Interfaces/*

<<interface>>
IGraphType

+ Kind: TypeKind
+ Published: bool

<<interface>>
ISchemaItem

+ Name: string
+ Description: string

<<interface>>
IUnionGraphType

+ TypeMapper: IUnionTypeMapper
+ PossibleGraphTypeNames: string[]
+ PossibleConcreteTypes: Type[]

Union Graph Type
The union type represents an intersection of other graph types. It contains a type mapper to distinguish which graph type a resolved .NET object should
masquerade as when executing a query.

<<interface>>
IUnionTypeMapper

+ MapType(Type runtimeObjectType): Type

The union graph type represents multiple different possible graph types. It
contains the names of the graph types contained in the union.

The TypeMapper property points to a class that can map between union types.
This is used to resolve some edge cases caused by object inheritance chains
when a resolved object could represent more than one type in the union.

For instance if a field resolver returned a Teacher object and the union
represents both Teachers and Employee objects. Since all teachers are also
employees it cannot deteremine which type is being requested without
additional criteria.

* The items in this document represent the primary set of interfaces, properties and methods. It does not
represent a complete model.

All represented interfaces located at: /src/graphql-aspnet/Interfaces/*

<<interface>>
ISchemaItem

+ Name: string
+ Description: string

<<interface>>
IGraphOperation

+ OperationType: GraphOperationType

Other Schema Items
This diagram shows some other import schema items, not related to graph types or fields.

<<interface>>
ISchema

+ KnownTypes: ISchemaTypeCollection

<<interface>>
IObjectGraphType

<<interface>>
IDirective

+ IResolver: IGraphDirectiveResolver
+ Locations: DirectiveLocation

<<interface>>
ITypedSchemaItem

+ ObjectType: Type
+ InternalName: string

A graph operation is a specialization of a regular object graph
type, representing one of the three top level operations for

GraphQL: Query, Mutation, Subscription. Graph operations
are internally controlled and cannot be manually created.

Any directives added
to your schema are
represented by an
IDirective object
which details where
and how it can be
applied.

The schema contains a
collection all known graph
types and directives.

* The items in this document represent the primary set of interfaces, properties and methods. It does not
represent a complete model.

All represented interfaces located at: /src/graphql-aspnet/Interfaces/*

ISubscriptionClientProxy<TSchema>

IClientConnection

Browser or other client
application

Sends
Data

Subscribes to event types

ISubscriptionEventRouter
Delivers New

Events

Subscription Interfaces
This diagram shows how each of the core subscription-related interfaces work
together on the subscription server.

ISubscriptionEventPublisher - An object that can publish newly
created events (usually from mutation queries) to an eventing
mechanism such that they can be replayed on each subscription
server.

IClientConnection - Encapsulates a connection implementation
(usually a web socket) and exposes common methods used for
communicating to the connection.

ISubscriptionClientProxy - Encapsulates the connection with
GraphQL specifics (such as target schema) as well as the ability to
monitor messages received through the connection. A client proxy is
"protocol specific" and should interprete and process messages from
the client connection. For instance, Gql t wsCl i ent Pr oxy interpretes
any message from a client connection as one that conforms to the
modern graphql-transport-ws websocket protocol.

ISubscriptionEventRouter - The event router acts as an intermediary
between the subscription server(s) and the event source. Once you
deserialize your events from an event source, you hand them to the
event router for dispatching to the various schemas and connected
clients.

ISubscriptionEventPublisher

Developer Code
Creates events via 'PublishSubscriptionEvent()'

Query/Mutation Server

Subscription Server

Implementation Specific Event Materialization

Some mechanism by which events (published via a
ISubscriptionEventPublisher) materialize and are forwarded to
the router for distribution. This could be a background service
listening to a service bus topic, a database query etc.

forwards events to

SubscriptionEvent

Pubishes events via

Not shown are several
internal mechanisms to
decouple event
publication from the
http request where the
events are generated.

Event Source

A stream of events to be
delivered to clients. Either an
internal queue for single server
implementations or a persistant
source (like a service bus topic)
for multi-server configurations.

Event Source

A stream of events to be
delivered to clients. Either an
internal queue for single server
implementations or a persistant
source (like a service bus topic)
for multi-server configurations.

Queues
New

Events

Listens For Events

Manages

A new event will cause a client
proxy to execute a subscription
with the event data and generate a
graphql result.

Starts
Subscriptions

IClientSubscriptionThe router contains a lot of
mechanisms to control event
propegation and delivery throttling
within the current server instance.

This document represents the major interfaces needed to understand how the standard subscription flow
works. It is not meant to be an exaustive study of all the moving parts. Inspect the subscription library's
source code for all the details.

https://github.com/enisdenjo/graphql-ws/blob/master/PROTOCOL.md

	GraphQL ASP.NET Structural
	Leaf Graph Types
	Object and Interface
	Input Object
	Unions
	Other Schema Items
	Sub Server Components

