
Graph Query Execution
When a query (or mutation) is received from a client it is handed off to the graphql runtime where a set series of steps are
executed to fulfil the request. In general these steps are grouped into four distinct phases and executed as follows.

Q
ue

st
io

n
E

xe
cu

tio
n

P
ha

se

P
ar

se
P

la
n

G
en

er
at

io
n

P
la

n
E

xe
cu

tio
n

R
es

po
ns

e

Lex the Document

Convert the query text into a set of distinct
tokens based on expected sequences of
characters. These units have no relational
context yet, they are just a stream of data
types.

Examples: a variable, start of a field set, a
name of something etc.

Generate a Abstract Syntax Tree (AST)

Create a contextual syntax tree from the token stream. This begins to provide context to the query and ensures its
internally consistant with the rules of the graphql specification. The syntax tree is a series of nested nodes that are
guaranteed to be correctly ordered. That is to say a variable declaration will only exist at the start of an operation,
fragments are properly named, fragment spreads don't form cycles etc.

Note: no schema binding occurs at this stage, a syntax tree has no way to tell if a reference to field "address" is correct,
just that, should it exist, it has been requested correctly.

Example Node Types: OperationNode, ScalarValueNode, FieldCollectionNode etc.

Create a Query Plan

A query plan represents the marrying of an AST to a target schema for a single operation. If the AST contains multiple
operations the correct one is chosen based on user input. The plan generator will recrusively walk the AST, appropriately
match each field request to an appropriate resolver, each variable and input object to value generators etc.

Performance Note: No execution information (such as variable values) are included at this step. Query plan generation
can be considered a "pure operation" for a given schema, operation and query document combination. As such, it can be
cached and all steps prior to this can be skipped on future executions of the same query text, regardless of the requestor
or supplied variable parameters.

User Supplied Variables
Values

Apply variables to input
fields as necessary.

Fieldsets to resolve?

Resolve all fields in
the current set

Yes

No

Compile the Results

The reslults of each field resolution are gathered and packaged
irrespective of the field contexts under which they were
generated. This decouples the response data from all the query
execution meta data organizing things such as failed fields,
authorization issues, exceptions and of course extracts the raw
data of the query.

Serialization

The results are put through a customized serialization
component to generate the structured output required of
graphql in the given format of the serializer (mostly
json).

Response is sent
to the requestor

FieldResolverFieldResolverFieldResolver

Request Processing
This diagram illustrates the conceptual activities, segmented by middleware pipelines, for completing a single query.

Query Package is handed
to the runtime*

Primary Query Execution

Lex & Parse a Query

Create Query Plan

Package Completed FieldContexts

Execute The Operation

Top Level Field

Top Level Field

Hand Off Results to
Serializer

Single Field Execution

Field Request
Valid?

User is
Authorized?

Execute Field Resolver

FieldContext
Completed

Child Fields
Exist?

Yes
No

Yes No

No

Yes

Field Authorization

Security Policies
Defined?

Authenticated
User Context

Exists?

Authorized

Denied

For Each Policy

Authorize Against Systen Configured
Policy Name

Authorize Against Configured Roles

Authorize Against Required Auth
Schemes

All Policies
Passed?

Yes

No

Yes

No

Yes

No

Hand off From
Field Execution

*Invocation of the GraphQL ASP.NET runtime is traditionally done via an HttpProcessor mapped to an URI via ASP.NET, however; this is simply a convience
interation point. The runtime can be safely invoked anywhere as long as the correct data fields are supplied to it.

Process Execution Directives

Primary Middleware Pipelines
GraphQL ASP.NET performs its query resolutions, from start to finish, in a set of 4 middleware pipelines that perform small incremental actions on a data context in order to produce a result.
This diagram contains a description of the default components included in each pipeline. All pipelines are extensible via startup configuration settings.

Query Execution Pipeline
The primary workflow of a query. The ASP.NET runtime will hand off the raw data of the request (the query text and variable package) from a caller to this
pipeline for processing.

This pipeline passes forward a Gr aphQuer yExecut i onCont ext containing top level information describing the request data and the authorized user, if any.

3) Par seQuer yDocument

Lexes and parses the document text into a syntax tree, which is attached to
the context.

1) Val i dat eQuer yRequest

Ensures that the request data, handed off from ASP.NET, could be completed
in its current state. i.e. is the query text not blank, was pipeline context
properly generated and supplied etc.

2) Recor dQuer yMet r i cs

Manages the performance metrics of the plan starting the clock and ending
any performance counters still running as the pipeline unwinds.

9) Gener at eQuer yPl an

Creates a query execution plan for the chosen operation.

10) Execut eQuer yOper at i on

Spawns and completes set of Field Execution Pipelines for each top-level
field in the requested operation. The results of each are attached to the
execution context.

11) PackageQuer yResul t

Packages the completed field execution results into a final
I Gr aphOper at i onResul t .

7) Quer yAut hor i zat i on (opt i onal)

When included, this component will invoke the authorization pipeline for every
"secure" field and directive (those that define auth rules) on the chosen
operation and approve or deny the user access to continue executing the
query as a whole.

This document represents the middleware component order in its default configuration. Out of the box, GraphQL ASP.NET can support either authorization scheme (field or query level) on a "per
schema" basis. Each pipeline can be extended, interjected or completely changed to suit the developer's needs.

4) Val i dat eQuer yDocument

Performs a first pass validation to ensure the constructed query document is
internally consistant.

5) Assi gnOper at i on

Chooses the correct operation to be executed in multi-operation documents.

6) Val i dat e Var i abl e Dat a

Validates any supplied variable values against the variable declarations in the
chosen operation.

8) Appl y Execut i on Di r ect i ves

Invokes the Directive Execution Pipeline for each execution directive applied
to the query document's chosen operation.

Field Execution Pipeline
For any field that needs to be resolved (i.e. when data is needed
from user code to fulfill a graph query), each field is processed
through its own pipeline to invoke the user's code in a secure and
isolated manner.

This pipeline passes forward a Gr aphFi el dExecut i onCont ext
containing all required field level data.

1) Val i dat eFi el dExecut i onRequest

Ensures that the request for the individual field can
be completed in its current state. I.E. given the
supplied source object a mapped resolver exists
that can handle the request and all the required
parameterized information for said resolver is
present.

3) Resol veFi el d

The field resolver itself (the developers's code) is
invoked and the results are recorded to the field
context.

2) Aut hor i zat i on (opt i onal)

When included, this component will invoke the
schema item authorization pipeline for the single
field approving or denying the user access to the
data field.

Schema Item Authorization
Pipeline
For any schema item (field, directive etc.) that needs to
be resolved, the is processed through its own pipeline to
ensure the currently active user is authorized to access
the item they are requesting.

This pipeline passes forward a
Gr aphSchemaI t emSecur i t yCont ext containing the
metadata to complete an authN and authZ check.

2) Aut hent i cat i on

Using the security requriements from step one
authenticates the user in an appropriate manner and
generates a representation of the user
(ClaimsPrincipal).

4) Pr ocess Chi l d Fi el ds

Kicks off the appropriate field execution pipelines for
any child fields requested of the field just resolved.

1) Pol i cy Aggr egat i on

Inspects the security groups and policies attached to
the provided schema item and generates a set of
authN and authZ requirements that must be met.

3) Aut hor i zat i on

Using the security requriements from step one and
the authenticated user from step 2 authorizes the
user against the required policies, roles etc. and
generates a challenge result indicating success or
failure.

Directive Execution Pipeline
For any directive that needs to be executed this pipeline is invoked
allowing the directive to execute its code against the query
document part its been applied to.

This pipeline passes forward a Gr aphDi r ect i veExecut i onCont ext
containing all required field level data.

1) Val i dat eDi r ect i veExecut i onRequest

Ensures that the request for the individual directive
can be completed in its current state. Is the
directive employed in a valid location? Is it defined
on the schema? etc.

3) Resol veDi r ect i ve

The directive's resolver is invoked. Each directive
may or may not alter the query document in some
way.

2) Aut hor i zat i on (opt i onal)

When included, this component will invoke the
schema item authorization pipeline for the single
directive approving or denying the user access to
the execute said directive.

This document represents the middleware component order in its default configuration. Out of the box, GraphQL ASP.NET can support either authorization scheme (field or query level) on a "per
schema" basis. Each pipeline can be extended, interjected or completely changed to suit the developer's needs.

Field Resolver Middleware Invoked
with an Execution Context

Context is
previously
Validated?

Generate Field Resolution Context

* The details of the controller action resolver is shown here for clarity of process. It is the most used and most complex of
all the defined resolver types. A developer may also inherit from IGraphFieldResolver and create new or replace any
default provided resolvers

All resolvers located at: /{repo}/src/graphql-aspnet/Internal/Resolvers/*

Execution Context is
marked as failed

Yes

No

Execute Appropriate Resolver

Controller Action Resolver

Simple Object Method Resolver

Router Field Method Resolver

Data Value Resolver
(Lamba Method Resolver)

Simple Object Property Resolver

Controller Action Resolver*

Invoke ActionResult against Execution Context

Create controller from the IServiceProvider on the context

Controller Action Invocation

Generate Model State

Retrieve or Create Developer Controller Action Invoker

Invoke Developer Action Method

Create Appropriate ActionResult

Resolved Value
Stored on Context

Resolver Descriptions

Object Property Resolver: Extracts a single value of a single
property from the source object.

Object Method Resolver: Executes a single public method on
the source object and uses the returned value as the result.

Route Field Method Resolver: An internally used resolver to
handle virtual fields generated to support the developer's
requested graph structure when the developer doesn't
specifically create a controller action for each level of their
graph hierarchy

Data Value Resolver: Similar to the method resolver this
resolver executes a supplied lambda to perform some action
and generate a result.

Controller Action Resolver: Executes an ASP.NET MVC style
controller with appropriate model level validation and
processing of generated ActionResults.

Enforce Single Field
Completion Rules

Assign Results
to the Context

Execute Child Fields
Enforce Chained
Field Validation

Rules

Invoking a Single Field Resolver
This diagram illustrates how a single field is eventually resolved marrying the library's internal code to the developer's code
for performing meaningful business logic.

GraphController

Raising a Subscription Event
This diagram illustrates how a named event is raised from a GraphController and is passed through to a subscribed client.

.PublishEvent()

Enqueue the
event to the local

context.

Query Execution Pipeline

Component N

Publish Subscription Events Middleware
Looks for events queued within this context and
forwards them to an internal, threadsafe
container where a seperate process retrieves
them and hands them off to the event publisher.

This ensures event publication is not tied to any
pending HTTP request.

. . .

. . .

. . .

Component 1

Event Publisher
Publishes events

such that any
subscribers can

receive them

Primary GraphQL Runtime

Subscriptions Server

The local event router
distributes the event to

various clients.

Query Execution Pipeline

Component N

. . .

. . .

. . .

Component 1

The client proxy
executes a

standard query
using the provided

event data.

Typically, the dispatching of raised events to
the subscription server will occur last in the
query execution pipeline (after all fields have
been resolved).

The client proxy
sends the result to

the connected client
(Web Browser etc.)

The results of the execution are sent to the
connected client as a standard graphql
operation result.

The client proxy
receives event data.

(ISubscriptionEventPublisher)

The method of "publishing events" is highly
dependent on the configuration of the
system. It could be as simple as an internal
queue or as complex as a service bus
topic.

ASP.NET Server Instance

ClientClient

A GraphController will raise a new event that will be sent
to an in-process publisher and raised to the local event
router. Events are not published beyond the boundry of
the ASP.NET server instance.

Subscriptions (In Process)
This diagram represents the primary logical components of the graphql subscription server when it is hosted in the same instance as the primary runtime.

Pros: No moving parts. The subscriptions are hosted right along side your query/mutation requests. There is near zero delay from when a subscription event is
raised to when its dispatched to a subscription.

Cons: This solution provides no scalability. For smaller implementations this may work fine. If you ever have to introduce a second GraphQL server to balance
query load or reach a prohibitive number of websocket connections this solution will fail. When scaled horiztonally some subscribed clients will not receive
events raised by another server instance.

GraphQL Server Instance
(Schema2)

GraphQL Server Instance (Schema1)

Local Event RouterGraphController

New
Subscription
Event Raised

Listening Clients

Subscription
Client Proxy

Subscription
Client Proxy

webSocketwebSocket

Graph Controller 2

Graph Controller 3

Event Details
Received

Graph Controller N

InProcessSubscriptionPublisher
<ISubscriptionEventPublisher>

Client2Client1

Subscriptions (Out of Process)
This diagram represents the primary logical components of the graphql subscription operation and how the
primary runtime interacts with the server(s) hosting the websocket connections.

PROS: This approach gives you a high level of scalability by using an intermediary (like a broked message
queue) to completely disconnect the graphql query/mutation server from the subscription server instances.
Each "raised event" is emmited once by any given query server and the event is delivered to each server
listening for it.

CONS: This approach is more complex to implement (it has more moving parts) and requires an out of
process mechanism to manage messages and process events. Your graphQL subscriptions will be limited
by such constraints. Also, use of an intermediate messaging service (or database etc.) will introduce some
delay in subscribed clients receiving messages. This may be a matter of milliseconds or longer depending
on the technology used.

GraphQL Server Instance 2

GraphQL Server Instance 3

Under high loads you may have multiple,
load-balanced instances of your application.
Any of which may raise events at any time..

Using a message service completely
disconnects your query server from your
subscription servers. providing a high degree
of scalability and fault tolerance. There are
many messaging technologies that offer a
wide range of features for different scenarios.

Potential Tech: Redis, RabitMQ, Azure
Service Bus, Amazon MQ

In this setup, the data retriever may be a custom built
IHostedService that monitors a message queue.

The data retriever then deserializes subscription events from
the queue and forwards them to the local router to be
processed and distributed to any connected clients.

GraphQL Server Instance

GraphController

C
us

to
m

S
ub

sc
rip

tio
nP

ub
lis

he
r

<
IS

ub
sc

rip
tio

nP
ub

lis
he

r>New
Subscription
Event Raised

Graph Controller 2

Graph Controller N

Intermediate Messaging Service
GraphQL Server Instance 2

GraphQL Server Instance 3

GraphQL Server Instance 1
Local Event Router

Event Details Received

Managed Clients

Subscription
Client Proxy

Subscription
Client Proxy

Data Retriever

An out of process subscription server requires creating two components:

Subscription Publisher: Implement ISubscriptionPublisher and deliver
subscription events to some intermediate data source like a message
queue. This object must be registered with your DI container.

Data Retriever: Create some sort of data retrieval process such that each
server instance can pull a copy of a subscription event when needed.
Deserialize the event and forward it to the server's ISubscriptionEventRouter
(available through DI). You do not need to perform any processing on the
message other than deserializing it.

webSocket webSocket

	GraphQL ASP.NET Execution
	Workflow
	Internal Flow
	Middleware Pipelines
	Middleware Pipelines
	Single Field Resolution
	Subscription Eventing
	Subs (In Process)
	Subs (Out of Process)

